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Remarks are made regarding numerical properties of a system of ordinary differential 
equations that results from the application of the Kantorovich technique to the tidal equations. 
It is shown that shape functions can be specified by a “problem-oriented inner product” 
leading to an orthogonal-shape function set. Such a choice may lead to substantial 
computational savings. 

1. INTRODUCTION 

The traditional approach to the analysis of free- and forced-seiche motions in 
homogeneous water bodies, especially lakes, was the “channel” approximation (for a 
review see Defant [3]) but with this simple model the slowly rotating waves, which 
appear in lakes and can be traced to the Earth’s rotation, cannot be reproduced. A 
first attempt to account for the rotation of the Earth in seiches in lakes was made by 
Defant [2] for Lake Michigan using the idea of A. Defant. The idea is to assume that 
the seiche motion exhibits Kelvin-wave character; thus, to the solution of the channel 
approximation a transverse slope of the free surface is superimposed, obtained from 
the geostrophic balance. This well describes the amphidromic system of the lowest 
mode in long lakes as proven by Rao [ 141 for long rectangular basins. Since the 
Kelvin-wave hypothesis is not always justified, especially for rounded lakes and 
higher modes the channel approach was abandoned and solution procedures for the 
two-dimensional linear-tidal equations were searched for. For natural basins finite- 
difference (Platzman [9], Rao and Schwab [ 151) or finite-element (Hamblin [ 71) 
methods were used. 

Since many lakes are elongated the most likely excited modes are the lowest ones 
having predominantly longitudinal character. Thus, the success of the channel 
approximation is because “... it replaces a difficult two-dimensional problem by a 
highly tractable one-dimensional problem” (Platzman [9]). Discussions on the 
difficulties of the two-dimensional equations are given by Platzman [9] and 
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a 

FIG. 1. Elongated curved lake embedded in three-dimensional space. Equations in the text refer to 
the curvi-linear coordinate system (s, n, z) in the “long” and transverse directions of the lake. 

Hamblin [6]. The approach of this paper is to use the Kantorovich method 
(Kantorovich and Krylov [8]) to reduce partial differential equations to ordinary 
differential equations. This method is outlined for the problem at hand in Raggio 
[lo]), Raggio and Hutter [ 111; analytical tests of the equations and results for free 
and forced oscillations in a natural lake are given by Raggio and Hutter [ 11, 121. 

The numerical analysis of the above-mentioned extended-channel model are dealt 
with. Periodic solutions in time are assumed. The linear-tidal equations are 
formulated in a plane right-handed orthogonal curvilinear-coordinate system along 
the “axis” of the lake, see Fig. 1; subsequently, the field variables, which are 
functions of the longitudinal and transverse coordinates, are expanded with shape 
functions in the transverse coordinate only. Thus, any field variable x may be 
expressed as x = 0 . x, where 4 = O(n) is the vector of the shape functions and 
x = x(s) the unknown amplitude vector of dimension N, s and n are longitudinal and 
transverse coordinates, respectively. These expansions are used in weighted-residual 
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FIG. 2. Top view of the eastern basin of Lake of Lugano with bathymetry. 
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expressions in which a Galerkin procedure is chosen. What emerges is a set of 
ordinary differential equations, in our case a two-point boundary value problem. The 
two boundary points are the extreme ends of the channel axis. In the above- 
mentioned Kantorovich technique the shape functions need not necessarily fulfill the 
lateral-boundary conditions since a slip condition was assumed, which is a natural- 
boundary condition of the original problem. 

The analysis was carried out for the eastern basin of the Lake of Lugano (at the 
Swiss-Italian border), and here all results relate to this lake; for a top view with 
bathymetry see Fig. 2. 

2. BASIC EQUATION 

The governing equations are a set of mixed-ordinary differential and algebraic 
equations. The first arise by applying the Kantorovich technique to the continuity 
equation and longitudinal-momentum balance, the latter by applying this technique to 
the momentum balance in transverse direction. Introducing as amplitude vectors the 
longitudinal velocity u,, the transverse velocity u,, , and the surface elevation r, the 
equations read 

in which 

and 

D$+By+Cv,=I,, Ey+Av,=l,, (2-l) 

Y = (vv 5)’ (2.2) 

B= 
,R + io ,C 

a ,c/as 

E = df ,c g ,C,)v A = (IR + iw $), 
(2.3) 

where o is the frequency of oscillation, f is the Coriolis parameter and g the 
acceleration due to gravity. Further, 1, and 1, are two forcing vectors which take into 
account wind drag and atmospheric-pressure differences and the matrix ,R considers 
bottom friction. The submatrices listed in (2.3) are cross-sectional constants; when Q 
is the cross section, H the depth of the lake and J the Jacobian of the curvilinear- 
coordinate system, then 

,c = ii HJm# a $‘dn, 
Q 

,z = J+ . $’ dn, (2.4) 

,R = $6 - 4’ I+, n) dn, rc,n,=[l+(f)2+(f~)]1’2, 
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in which B + and B- are the 2 shore lines and R a friction coefficient. It relates shear 
traction at the bottom to the tangential-sliding velocity, v = Rr, and need not be 
constant. Further, these submatrices are (N x N) matrices and, thus, (2.1) is a system 
of 2N differential equations and N algebraic equations. 

Boundary conditions for a lake, neglecting inflow and outflow, are that no flux 
occurs at the two endpoints which can be expressed as 

(1 O)y=Hy=O at s =O, L, (2.5) 

where L is the length of the lake along the axis. 
Since A is nonsingular, if w # 0, and because “C is positive definite (2.1) with 

boundary conditions, (2.4) may be reduced to a standard two-point boundary value 
problem in the form 

Y’(S) = F(s, 0) y(s) + a@, w) (2.6a) 

HY(O) = 0, Hy(L) = 0. (2.6b) 

To determine the natural frequencies of oscillation o of a basin the friction terms in 
(2.3) and a in (2.6a) must be dropped. 

3. INTEGRATION METHOD 

As a method of integration for the two-point boundary value problem (2.6) the 
initial-value approach was chosen. In this method linear-independent solutions 
fulfilling the boundary condition at the initial boundary are linearly combined and the 
second-boundary condition determines the free constants of superposition, see Scott 
and Watts [ 161. 

The local behaviour of the differential equation (2.6) at a point s,) for a fixed 
frequency of oscillation o0 may be characterized by the eigenvalues li, i = l,..., 2N of 
the matrix F(so, wJ. (These li should not be confused with the eigenvalues oi which 
are the natural frequencies of oscillation). If we consider F to be constant in an 
interval of s near s, assuming that the Li are all distinct, the general solution is given 
by 

(3.1) 

where the (xi are constants determined essentially by the values of y at s, and the 
eigenvalues ki, and corresponding eigenvectors pi fulfill the equation 

F(so, ~0,) * Pi = LiPi- (3.2) 
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Arranging the eigenvalues in ascending order according to their real parts, 
Re(l,) < ..+ < Re@,,), the spectral width is then 

d = Re(l,,) - Re(l,). (3.3) 

For practical frequency ranges the spectral width of the matrix F increases with 
increasing number of shape functions per variable. In other words, the real parts of 
the eigenvalues of F lie farther and farther apart with increasing number of shape 
functions. 

NUMBER OF SWlPE FUNCTIBNS 2 

FIG. 3. Real parts of eigenvalues [km-‘] of the differential equation along the axis of the lake for 
the free-oscillation case. The frequency corresponds to the fourth gravity mode (w = 0.280018 Hz) of the 
eastern basin of Lake of Lugano. Figures 3a and b display the real parts using 2 and 5 Cauchy terms as 
shape functions. 
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As a consequence of the large-spectral width of the matrix F the linearly 
independent functions become numerically linearly dependent as integration proceeds 
(see Eq. 3.2). It is overcome by dividing the integration interval into subintervals in 
which the superposition solutions may be maintained numerically linearly 
independent. The software package SUPORT of Sandia Laboratories, developed by 
Scott, Watts, and Lord (see, e.g., Scott and Watts [ 161, and Watts et al. [ 171) was 
used. It was primarily designed to solve by an initial-value integration process, 
unstable-linear two-point boundary value problems and problems strongly sensitive to 
initial conditions. It overcomes the difficulty of independent-superposition solutions 
becoming linearly or almost-linearly dependent by an orthonormalization procedure. 
The SUPORT package allows for several alternatives for its implementation. For our 
application these are discussed by Raggio [lo]. 

The eigenvalues Ji represent the different length scales which are included in the 
model. This is displayed in Figs. 3a and b for a frequency near the fourth eigenmode 
w = 0.280018 Hz, (for details, see Ragio [lo]). The abscissa represents the axis of 
the lake measured in km from its soutwestern to its northeastern end. The natural 
logarithm of the absolute values of the real parts times the sign of the real parts are 
displayed on the ordinate; when its absolute value is smaller than unity, zero is 
shown. The physical interpretation of the general growth of the spectral width is that, 
as the number of shape functions increases shorter and shorter wavelength scales are 
included in the model. These are represented by the large eigenvalues which are 
essentially wavenumbers. The peaks in Fig. 3b can be correlated with the variation of 
the cross-sectional area along the lake axis. This is so because a reduction in the 
cross section will cause retarding of waves and, thus, a strong increase of the real 
parts of the eigenvalues and vice versa. 

To conclude this section we shall show in Table I the number of orthonor- 
malization points determined by the SUPORT package when integrating from Melide 

TABLE I 

Number of Number of 
shape orthonormalization 

functions points 

Number of 
orthonormalization 

points between 5 and 
5.5 km from Melide 

1 - - 
2 3 - 

3 1 I 
4 16 7 
5 87 12 

Note. Number of shape functions and the resulting number of orthonormalization points for the 
fourth mode of oscillation (w = 0.280018 Hz) using the Default parameter for the orthonormalization 
test in the SUPORT package. Distances are measured along the axis of the lake from Melide Dam. 
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to Porlezza. It is clearly seen that the number of orthonormalization points increases 
drastically with the number of shape functions. The table also shows the clustering of 
these points in the domain with large-real parts of eigenvalues for F, see Fig. 3b. 

4. CHOICE OF SHAPE FUNCTIONS 

In the Kantorovich method, shape functions may be selected from physically 
meaningful assumptions of the particular phenomena one would like to simulate. 
Another criterion may be to reduce the computational effort by selecting shape 
functions from special orthogonal families. Such families are generated by inner 
products of the form 

(pi, Pj) = jb lV(n) Pi(n) Pj(n) dn = lIpill, i=j, 
a 

= 0, i#j 
(4.1) 

in which P, and P, are two members of the family and w is a weighting function. A 
sufficient condition for (4.1) to be an inner product is that a and b are finite and 
w > 0. Among the computationally efficient families are the polynomials, and in the 
following these will be used and some of the results may be transferred to other 
nonpolynomial families. Orthogonal polynomials can be constructed with three-term 
recursive formulas. 

The idea is to select shape functions + which diagonalize a particular submatrix in 
(2.1) and, thus, are orthogonal with respect to that particular inner product. The 
criterion for the selection of the appropriate family will be the least number of 
elementary operations to evaluate the right-hand side of (2.6a) in the initial-value 
approach with a Runge-Kutta integrator at each point along the axis.‘It turns out that 
the most convenient choice is to make ,C diagonal or the unit matrix. From (2.4) the 
weighting function w is the depth of the cross section weighted with the Jacobian, 
w = HJ, which is always greater or equal to zero and thus admissible. With this 
choice ,C, is upper triangular with zero-diagonal entries, since 

and Pj is a polynomial of order j, thus Pj+, is of order (j - 1) which can be expressed 
as a linear combination of the first j members of the family, 

pi.,= i akpk 
k=O 

and, therefore, 

j=l j=l 

(Pi, PI,,) = kzo Qk(Pi9 Pk) = C ‘k IlP,ll6,i 
k=O 
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= 0, i >A 

= ai lIpill, i <j. 

This proves triangularity with zero diagonal elements. Further, if these are chosen as 
orthogonal polynomials $ will be nearly the unit matrix, since it has H rather than 
HJ as weighting factor in the inner product. Thus, d(,C)/ds is nearly the zero matrix, 
which causes a reduction of the number of orthonormalization points in the 
integration process. This is because the spectral width of the eigenvalues of F will 
show reduced peaks along the channel axis. 

For the explicit calculation of the above-mentioned elementary operations one must 
take into consideration the superposition method as implemented in SUPORT. At 
each point along the axis where the integration requires evaluation of the differential 
equation, (N + 1) computations of F . y and one computation of a must be done. In 
Table II the number of elementary operations are shown. In the first row the 
operations required for general shape functions with no special orthogonal properties 
are given. The subsequent rows contain the numbers of operations needed for 
orthogonal and orthonormal functions which make ,C a diagonal and unit matrix, 
respectively. The cases of free and forced oscillation are given in the first and second 
column, respectively. This proves that using these orthogonal-shape functions reduces 
the number of elementary operations by, roughly, a factor of two. Further, not only 
have fewer coefficients of the ordinary differential equations been calculated and 
stored but also fewer coefficients must be interpolated during the integration. For 
problems with analytic solutions orthogonal functions are more accurate than shape 
functions with compact support (these lead to banded submatrices and thus have 
computational advantages as well), since they are higher order representations. 

In the following the computational effort required to compute the response of the 
Lake of Lugano in the frequency range with wind forcing is presented. Three shape 
functions were used for a Cauchy series (these are simple powers in the transverse 
coordinate and represent families with no special orthogonal properties), orthogonal 
and orthonormal polynomials. The sampled frequency range was in the range of the 
first few seiche modes. As the frequency falls below the first eigenfrequency the 
system of ordinary differential equations becomes stiffer. Thus for this example, for 

TABLE II 

Shape function Free oscillation Forced oscillation 

general 
orthogonal-$ 
orthonormal-,C 

12216 * N” + 12 * N2 185/6 * N” + 59 * N2 + 16 * N 
6116 * N’ + 18 * N= 9516 * N’ + 31* N2 f 18 * N 
6116 * N3 + 12 *N= 11/6*N3+21*N2+10*N 

Note. Elementary operations required at each point along the axis in the integration process for the 
system (2.6a) in the free- and forced-oscillation cases (for general, orthogonal-,C and orthonormal-,C 
shape functions). 
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the frequency range between 0.3 x 10-l and 0.3 X 1O-3 (Hz) the Runga-Kutta 
integrator of SUPORT was used and for the range 0.3 x lop3 to 0.3 X lop4 (Hz) the 
Adams code of SUPORT was used. The integration was carried out with a relative 
and absolute tolerance of 5 X IO-*. The columns of Tables III and IV give the 
computational requirements for the different shape functions. The first row shows the 
relative cost of the calculations in the frequency ranges. The following rows have 
pairs of numbers; the first corresponds to the lower and the second to the upper 
frequency limit of the frequency ranges in each table. Thus, the second number of the 
pairs given in Table III may be compared with the first number of the pairs given in 
Table IV. The second row gives the processing time in seconds, the third row the 
number of orthonormalization points, the fifth row the number of function 
evaluations with different arguments for the independent variable (the number of 
times that coefficients of the differential equations have to be computed and the 

TABLE III 

Shape function 
Orthonormal Orthogonal 
polynomials polynomials 

Cauchy 
series 

relative cost 
processing time (s) 
orthonormalization points 
integral steps 
function evaluations 
function calls 

0.15 0.30 0.54 
vG3) (8Jl) (17.20) 
(824) (926) (93 ) 

(3 L54) (35S9) (43755) 
(217,340) (261,365) (339,396) 

(900,1454) (1080,156O) (1396,1652) 

Note. Computational requirements using orthonormal and orthogonal polynomials and Cauchy 
series as shape functions in the frequency range between 0.3 x 10-l and 0.3 x lo-’ (Hz) using the 
Runge-Kutta integrator. 

TABLE IV 

Shape function 
Orthonormal 
polynomials 

Orthogonal 
polynomials 

Cauchy 
series 

relative cost 
processing time (s) 
orthonormalization points 
integral steps 
function evaluations 
function calls 

0.42 0.67 
(1525) (203) (2:;7) 
(26, 7) (3OJO) (28, 9) 

(281,557) (3 13,602) (277,601) 
(285,582) (3 17,628) (290,628) 

(2364,4584) (2636,496O) (2364,4954) 

Note. Computational requirements using orthonormal and orthogonal polynomials and Cauchy 
series as shape functions in the frequency range between 0.3 x 10-j and 0.3 x 10e4 (Hz) using the 
Adams integrator. 
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function itself has to be evaluated), and finally the sixth row gives the number of 
function evaluations (referred to as “function calls” in the tables) required after the 
coefficients of the equations have been interpolated and the LLJ-decompositions have 
been made. 

Although the orthonormal polynomials are the most efficient, for a tixed- 
integration tolerance, inspection of the results from these shape functions shows that 
in some parts, especially the shallow regions of the lake, the solution seemed to be 
incorrect (i.e., very large values for surface elevation amplitude). This is so because 
for orthonormal shape functions integration should be carried out with higher 
accuracy, since the solution y of the ordinary differential equations (2.6) must be less 
smooth than when “nonnormalized” shape functions are used. The basis for this is as 
follows (the argument assumes that the physical solution of a problem in a channel of 
nonconstant cross section is smooth, i.e., smooth surface elevation in a lake. In a 
channel-type model the physical solution is computed by the scalar product of the 
shape functions $ and the solutions y of the differential equations): If the shape 
functions are the same for all cross sections, the solution y must be smooth if the 
physical solution is smooth. Normalizing the shape functions (as has been done with 
the orthonormal polynomials for rC> in a channel of nonconstant cross section, 
transforms the channel into a canal of constant cross section. Thus, if the physical 
solution is smooth, the solutions of the differential equations will be less smooth since 
the shape function may have quite different magnitudes along the axis of the channel- 
like lake. 

The results for Cauchy series and orthogonal polynomials were very similar but, as 
seen from Tables III and IV, orthogonal polynomials are far more convenient because 
of the reduction in computational requirements. 

5. CLOSING REMARKS 

In this article numerical properties of a set of ordinary differential equations have 
been discussed which evolves from the application of the Kantorovich technique to 
the spatially two-dimensional tidal equations. The purpose was to demonstrate that in 
the application of the Kantorovich method, shape functions can be determined with 
the aim to minimize computational effort. This led to shape functions of polynomial 
families which are orthogonal with respect to a problem-oriented inner product. It 
was shown that by this choice computational effort can be reduced in comparison to 
shape functions with no special orthogonality properties by a factor of, roughly, two. 

Since the Kantorovich method is used in many problems of slender bodies (e.g., 
rod and jet theories, see Antman [ 11, Green et al. [4, S]) and shape functions are 
often inconsiderately chosen this observation may be of use. 
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